Aus dem Inhalt:

VRR-kompakt
• Schadensrecht/Haftung • Kfz-Kauf • Transportrecht
• Zivilprozessrecht • Verkehrsordnungswidrigkeiten
• Straf-/OWi-Verfahren • Verkehrsstrafrecht
• Verkehrsverwaltungsrecht

Praxisforum
Wildschaden in der Fahrzeugversicherung
* RiOLG a.D. Dr. Ulrich Knappmann, Münster

Grundlagenwissen: Fahren ohne Fahrerlaubnis
* RiAG Carsten Krumm, Lüdinghausen

Rechtsprechung zur Höhe der Geschäftsgebühr bei der Unfallschadensregulierung
* RAIn Rita Zorn, Gernsbach

Unfallrekonstruktion
Lkw-Spurwechsel auf mehrspurigen Richtungsfahrbahnen
* Dipl.-Ing. Dirk Schulze und Dipl.-Ing. Manfred Becke, Münster

VRR-Buchreport

Rechtsprechungsreport
• Verkehrszivilrecht
• Verkehrsstraf- und Ordnungswidrigkeitenrecht
• Verkehrsverwaltungsrecht
• Anwaltsvergütung

April 2007
3. Jahrgang

Herausgeber:
Detlef Burhoff
Richter am OLG, Münster/Hamm
(Geschäftsführender Herausgeber)

Dieter Birkeneder
Rechtsanwalt/Fachanwalt für Verkehrsrecht, München

Ralph Gümbner
Rechtsanwalt/Fachanwalt für Strafrecht, Kiel

Dr. David Herrmann
Rechtsanwalt/Fachanwalt für Strafrecht, Augsburg

Lothar Jaeger
Vors. Richter am OLG a.D., Köln

Dr. Ulrich Knappmann
Vors. Richter am OLG a.D., Münster

Prof. Karl-Heinz Schimmelpfennig
Dipl.-Ing. Manfred Becke
Sachverständige für Straßenverkehrsunfälle, Münster
Unfallrekonstruktion

Lkw-Spurwechsel auf mehrspurigen Richtungsfahrbahnen

von Dipl.-Ing. (FH) Jan-Dirk Schulze und Dipl.-Ing. Manfred Becke, Münster*

Der Spurwechsel ist im Straßenverkehr ein sehr häufig anzutreffendes Fahrmanöver, das jedoch ein erhebliches Gefahrenpotential in sich birgt. Auf Schnellstraßen und Autobahnen sind die Gefahren aufgrund der höheren Geschwindigkeiten größer als im Stadtverkehr.

Kritische Situationen entstehen vor allem, wenn ein Lkw unvermittelt die Spur wechselt, da oft ein erheblicher Geschwindigkeitsunterschied zwischen dem ausscherenden Lkw und dem auf der Zielfahrspur herannahenden Pkw vorliegt.

I. Untersuchung von real stattfindenden Spurwechseln

Viele Autofahrer haben es schon einmal erlebt: Man fährt mit zügigem Tempo auf der linken Spur der Autobahn und unvermittelt schert ein Lkw zum Überholen aus und zieht

* Die Autoren sind Sachverständige für Straßenverkehrsunfälle und Kfz-Technik im Ingenieurbüro Schimmelpfennig + Becke, Münster.
auf den linken Fahrstreifen. Eine schnelle Reaktion verhindert meistens einen Zusammenstoß, jedoch laufen solche Vorfälle nicht jedes Mal glimpflich ab.

Unfallrekonstrukturen haben häufig derartige Fälle zu rekonstruieren und müssen hierzu Annahmen über die Parameter des Spurwechselvorgangs treffen. Eine Analyse der grundlegenden Parameter eines Lkw-Spurwechsels erschien daher angebracht, da zu diesem Thema bislang lediglich für Pkw-Spurwechsel, aber nicht für den Lkw-Bereich umfangreiche Untersuchungen vorlagen.

Für die Analyse der Lkw-Spurwechsel wurden hauptsächlich folgende Fragestellungen untersucht:

- **Wie lange** dauert der Lkw-Spurwechsel?
- **Welche Querbeschleunigungen** entstehen beim Spurwechsel?
- **Welche Bahnhurve** befährt der Lkw beim Spurwechsel?
- **Existiert ein fest definierter Punkt**, an dem ein Spurwechsel für den nachfolgenden Verkehr eindeutig als solcher erkennbar ist?

II. Spurwechselzeiten

Die Spurwechselzeit t_s setzt sich zusammen aus der Ansprechzeit t_a und der Bewegungszeit t_b.

Die Ansprechzeit t_a beschreibt den Zeitraum zwischen dem Beginn der Lenkraddrehung und dem Beginn der Querbewegung, also eine Phase, in der der Spurwechsel bereits veranlasst worden ist, jedoch noch keine Querbewegung stattfindet. Die Bewegungszeit t_b umfasst den gesamten Zeitraum, in dem das Fahrzeug eine Querbewegung relativ zur Fahrbahnrichtung ausführt, also den Zeitraum zwischen Geradeauslauf auf der ursprünglichen Fahrspur bis zum Geradeauslauf auf der Zielfahrspur. Daraus ergibt sich, wie in Abb. 1 dargestellt, die gesamte Spurwechselzeit t_s.

Spurwechselzeit

$= $ **Ansprechzeit**

+ **Bewegungszeit**

![Diagramm der Spurwechselzeiten](image)

Abb. 1

In der vorliegenden Untersuchung wurde allerdings nur die tatsächliche Bewegungsdauer t_b untersucht.

Bei den Messungen ergab sich ein Durchschnittswert für die Bewegungszeit von

$t_b = 8,1 \text{ s}$

Die durch zwei unterschiedliche Methoden ermittelten Werte deckten sich hierbei sehr gut. Die Verteilung der Spurwechselzeiten in Abb. 2 zeigt eine deutliche Häufung der Werte (etwa 2/3) im Bereich $t_b = 6...9 \text{ s}$.

Der schnellste Spurwechsel wurde mit $t_b = 3,6 \text{ s}$ gemessen. Dieser Wert dürfte von einem normal ausgebildeten Fahrer bei einem voll beladenen (40 t) Lkw kaum zu unterbieten.

Durchschnittswert $t_b = 8,1 \text{ s}$
sein. Die höchsten gemessenen Werte wurden um etwa \(t_0 = 18 \ldots 20 \) s gemessen. Sie wurden nur an Aus- und Auffahrten beobachtet, und nur, wenn der Lkw-Fahrer sich bereits frühzeitig auf einen Spurwechselvorgang einstellen und von der Gefährlosigkeit überzeugen konnte.

Abb. 2

90 % aller Spurwechsel fanden in einem Bereich von

\[
t_0 = 5,5 \ldots 11,8 \text{ s}
\]

statt. Die ermittelten Werte liegen somit deutlich höher als Spurwechselzeiten im Pkw-Bereich. Jüngere Untersuchungen geben für normale Spurwechsel im Pkw-Bereich Werte zwischen \(t_0 = 4,7 \ldots 6,5 \) s an, für schnelle Spurwechsel Werte von \(t_0 = 3,1 \ldots 4,7 \) s.

III. Querbeschleunigungen

Lkw-Spurwechsel werden im Allgemeinen ruhiger durchgeführt als Pkw-Spurwechsel, daher erreichen auch die Querbeschleunigungen nicht deren Niveau. Dies liegt vermutlich daran, dass den Fahrern sehr wohl die Gefahren eines abrupten Lenkvorgangs bekannt sind und unter Berücksichtigung der hohen Zuladung dementsprechend vorsichtiger gefahren wird. Übliche Werte für die mittlere und maximale Querbeschleunigung bewegen sich in einem Bereich von

\[
a_{q,\text{mit}} = 0,2 \ldots 0,5 \text{ m/s}^2
\]
\[
a_{q,\text{max}} = 0,3 \ldots 1,5 \text{ m/s}^2
\]

Bei den schnellsten Spurwechseln wurden maximale Querbeschleunigungen um \(a_q = 2 \text{ m/s}^2 \) verzeichnet, wobei die Spurwechsel gefühlsmäßig an der Grenze zum Unangenehmen empfunden und deutliche Schwankungen des Aufbaus beobachtet wurden. Der Maximalwert bei allen Spurwechselmessungen betrug \(a_{q,\text{max}} = 2,3 \text{ m/s}^2 \).

Dies kann analog zur Spurwechselvorgänger als Maximum eines Normal-Fahrers betrachtet werden.

Diese Grenze liegt deutlich unterhalb jeglicher kritischen Marken, sodass im Normalfall kein signifikantes Verrutschen von Ladung oder gar ein Kippen des Lastzuges zu erwarten ist.

IV. Spurwechselbahn

Die Spurwechselbahnen zeigen grds. eine gute Übereinstimmung mit der in der Unfallrekonstruktion häufig verwendeten „schrägen Sinuslinie“, die somit als geeignete Beschreibungsmöglichkeit der realen Spurwechselbahn empfohlen werden kann.

In den nachfolgenden Abbildungen werden beispielhaft einige reale Spurwechselbahnen mit einer angepassten schrägen Sinuskurve verglichen (Abb. 6–8).

Analog zu den beobachteten Querbeschleunigungen überlagern sich bei geringeren Spurwechselzeiten reale Spurwechselbahn und schräge Sinuslinie deutlich besser als bei langsameren Spurwechseln. Bei zügigen Spurwechseln ist weiterhin eine Tendenz erkennbar, dass nach einer heftigen Querbewegung ein Gegenlenken notwendig ist, um das Fahrzeug mittig in die Spur zu bringen (s. Abb. 8).
V. Erkennbarkeit des Spurwechselbeginns

In der Sachverständigen-Praxis ist häufig von entscheidender Bedeutung, ab welchem Zeitpunkt der Spurwechsel für einen von hinten herannahenden Pkw-Fahrer erkennbar ist. Hierbei soll vom Blinksignal als Signalgeber für den einzuleitenden Spurwechsel einmal abgesehen werden.

Es zeigte sich in dieser Untersuchung, dass es keinen frühen ausgewiesenen Punkt gibt, ab dem der Spurwechsel eindeutig als solcher zu erkennen ist. Die Vermutung, dass sich anhand des Radeinschlags oder der Schrägstellung des Zuges zur Fahrtrichtung eine Spurwechselabsicht ableiten lässt, erwies sich als nicht haltbar. Der Vorderradeinschlag ist praktisch nicht erkennbar und die Schrägstellung des Zuges höchstens als untergeordnetes Erkennungsmerkmal zu bewerten.

Problematisch bei der Bestimmung des Erkennbarkeitspunktes ist vor allem die Tatsache, dass das Fahrzeug innerhalb der Fahrspur ständige Pendelbewegungen ausführt, die durchaus mit einem echten Spurwechselbeginn verwechselt werden können. Es ist also festzustellen, ab welchem Zeitpunkt eine Querbewegung über das übliche Maß der Pen-
delbewegung hinausgeht, und somit im Sinne der Gefahrenabweidung vom nachfolgenden Verkehr zwangläufig als Spurwechselbeginn interpretiert werden muss.

Ausgehend von der idealisierten, aber in guter Näherung verwendbaren schrägen Sinuslinie als Spurwechselbahn, dürfte im Bereich zwischen 0...15 % der Bewegungsdauer \(t_0 \) ein Spurwechselbeginn unter realen Bedingungen nicht erkennbar sein, da der seitliche Versatz bis zu diesem Punkt noch unter 10 cm liegt – selbst für den Fall, dass diese Bewegung dem Beobachter auffallen sollte, kann daraus noch nicht zwingend eine Spurwechselabsicht abgeleitet werden.

Der Zeitpunkt der maximalen Querbeschleunigung, der bei einem symmetrischen Spurwechsel nach 25 % der bewegten Strecke erreicht ist, scheint jedoch bei der Betrachtung ein markanter Punkt zu sein. In der Abb. 8 wird dieser Punkt der höchsten Querbeschleunigung verdeutlicht. Der Lkw hat zu diesem Zeitpunkt einen seitlichen Versatz von ca. 10 %, also bei einem Gesamtversatz von 3,75 m etwa 38 cm zurückgelegt. Eine konstante bis beschleunigte Bewegung quer zur Fahrtrichtung über diese Strecke sollte unter normalen Bedingungen dem Fahrer eines nachfolgenden Fahrzeugs eine Spurwechselabsicht zu erkennen geben und zu Abwehrmaßnahmen veranlassen.

Die kurz darauf folgende Überschreitung der Spurbegrenzungslinie (= Mittellinie) – bei mittiger Ausrichtung des Lkw in der Fahrspur bei etwa 30 % der gesamten Querbewegung – stellt zwar den zuvor beschriebenen ausgewiesenen Fixpunkt dar, kommt jedoch als Signalgeber eigentlich zu spät, da unter normalen Umständen ein eingeleiteter Spurwechsel einem herannahenden Verkehrsteilnehmer bereits früher auffallen muss.

Ein nicht angekündigter Spurwechsel dürfte also frühestens ab 15 % der Bewegungsdauer erkennbar sein. Spätestens und gleichzeitig am wahrscheinlichsten wird er im Bereich von etwa 30 % der gesamten Bewegungsdauer für einen nachfolgenden Verkehrsteilnehmer deutlich werden.

VI. Fazit

Im Pkw-Bereich werden Werte zwischen \(t_0 = 3,1...6,5 \) s genannt, während für Lkw-Spurwechsel eine Bandbreite von \(t_0 = 5,5...11,8 \) s angenommen werden kann.

Lkw-Spurwechsel auf mehrspurigen Richtungsfahrbahnen werden grds. in einem sehr eingeschränkten Geschwindigkeitsfenster durchgeführt und weisen immer den mehr oder weniger gleichen Seitenversatz auf. Daher hängt die Beschreibung des Spurwechsels nur

Nach ca. 30 % der Bewegungsdauer ist Spurwechselabsicht definitiv erkennbar.
von wenigen freien Parametern (Querbeschleunigung, Dauer, Strecke) ab, die noch dazu recht gut eingrenzbar sind und in direkten Zusammenhang gebracht werden können.

Normal durchgeführte Lkw-Spurwechsel sind vom Aspekt der Rutsch- und Kippsicherheit grds. als unbedenklich einzustufen und selbst kontrolliert schnell durchgeführte Spurwechsel weisen Querbeschleunigungen auf, die weit unterhalb jeglicher kritischer Grenzen liegen.