Ralf Krause*

Anfahrbeschleunigungen im alltäglichen Straßenverkehr

Zusammenfassung

Summary
In contrast to earlier publications that mostly investigated the starting behaviour of known test persons, the results presented in this paper originate from the observations of normal day traffic. The observations comprise 181 starting manoeuvres of passenger cars.

1 Einleitung

Das wesentliche Ziel der Auswertung lag darin, für die Praxis geschwindigkeitsabhängige Beschleunigungen zu ermitteln. Die Frage, welche Geschwindigkeit ein Pkw nach einer definierten Anfahrtstrecke aufweist, kann mit dem in den Diagrammen 1 bis 4 ausgeführten Beschleunigungswerten hinreichend beantwortet werden.

2 Versuchsaufbau
Die Messungen wurden in drei verschiedenen Kreuzungsbereichen aufgenommen. Neben zwei innerstädtischen Kreuzungen (Kurvengraden 10 und 14 m) wurde auch ein sehr ausgedehnter Kreuzungsbereich (Radius = 23 m) im Verlauf einer Bundesstraße einbezogen (Stopp-Straße). Die Kreuzungsbereiche wurden speziell präpariert: Unmittelbar vor und hinter den Halteinlinien waren in Meter-Abständen parallele Hbf-Linien aufgetragen.

*Dipl.-Ing. Ralf Krause, Sachverständiger im Ing.-Büro Schimmelpfennig + Becke, Münsterstraße 101, 48155 Münster
Ausgehend von der Zahl der Haltestellen wurden dann in Abständen von 5 m weitere Hilfslinien fixiert. Anhand der Hilfslinien war es nun möglich, die genaue Position eines Fahrzeugs im Anfahrvorgang zu erfassen.

Die Weg-Zeit-Erfassung, dass die Verkündung der einzelnen Streckenabschnitte mit den zugehörigen Zeitspannen, erfolgte durch die Aufzeichnung der Fahrvgänge mit Hilfe einer Videokamera. Im weiteren konnten die Filmsequenzen / Anfahrbewegungen mit einem Videoschnittgerät analysiert werden. Ein Beispiel dokumentieren die oben gezeigten Bilder. Die Sequenzen belegen, dass sich anhand dieser Methode relativ einfach Weg und Zeit mit einander in Beziehung setzen lassen.

Um die Fahrer nicht zu irritieren (und dadurch ungewollt Einfluss auf ihr Fahrverhalten zu nehmen), wurde unbemerktes aus Häusern gefilmt, die unmittelbar an den Kreuzungsbereich angrenzten. Gerät bot sich auch der Vorteil eine bessere Perspektive für die spätere Auswertung zu erhalten.

3 Ermittelte Anfahrbeschleunigungen

Das Ziel dieser Auswertung lag darin, praxisnahe Anfahrbeschleunigungen zu bestimmen und das sonst gebräuchliche Annahmespektrum zu überprüfen. Zu beachten war dabei, dass geschwindigkeitsabhängige Bewerte ermittelt werden sollten, in denen auch das Problem des nichtlinearen v-t-Verlaufs hinreichend berücksichtigt wurde (s. hierzu auch Abschnitt 4.2).

Die in den Diagrammen 1 bis 4 ausgewiesenen Anfahrbeschleunigungen gelten für den jeweils zurückgelegten Streckenabschnitt. Alle Werte beziehen sich auf Anfahrvgänge aus dem Stand. Um die aufgeführten, verschiedenen Dispersionsmaße einordnen zu können, bietet es sich an, zumindest Abschnitt 4.2 zu lesen. Der Abschnitt 4.2 beschreibt den Weg zum Ziel und ist damit von untergeordneter Bedeutung.

Wie zu erwarten ist, kann zunächst eine kontinuierliche Abnahme der Beschleunigung mit zunehmender Wegstrecke für alle Diagramme festgestellt werden. Für die Anfahrstrecke von 5 m (Geradeausfahrer / Diagramm 1) konnte für das 50 Perzentil eine Beschleunigung von etwa 2 m/s² berechnet und für 25 m lediglich noch ein Wert von 1.5 m/s² bestimmt werden!

Signifikant ist auch die Differenz des generellen Beschleunigungsniveaus zwischen geradeausfahrenden (5 m: 1.7 ... 2.3 m/s² → 20. bis 80. Perzentil / Diagram 1) und abbiegenden (5 m: 1.3 ... 1.9 m/s² → 20. bis 80. Perzentil / Diagram 4) Pkw. Die Unterschiede für die Abbieger inner- und außerorts lassen sich damit begründen, dass der Fahrzeugführer innerorts noch auf querenden Radverkehr oder auf Fußgänger zu achten hat. Einen weiteren Grund für das geringere Niveau liefert möglicherweise die Fahrphysik: Auf Grund der engagierden Abbiegeln innerhalb des innerstädtischen Bereich (R = 10 m und R = 14 m im Gegensatz zu denen außerorts R = 23 m) führen höhere Geschwindigkeiten (resultierend aus höheren Anfahrbeschleunigungen) zu größeren

4 Versuchsauwertung

In diesem Kapitel werden die mathematischen Werkzeuge erklärt. Aus der Vielzahl der Versuche lassen sich Bandbreiten und Tendenzen filtern, bei denen es statistische Gesichtspunkte zu berücksichtigen gilt. Die verschiedenen Dispersionsmaße und ihre Vor und Nachteile werden im nachfolgenden Kapitel 4.3 beschrieben und erklärt.

Auf Grund des nichtlinearen Geschwindigkeit-Zeit-Verlaufs müssen die gemessenen Parameter s (Weg) und t (Zeit) unter Einsatz von Approximationsfunktionen angenähert werden. Mit Hilfe der Ausgleichsrechnung lassen sich dann geschwindigkeitsabhängige Anfahrbeschleunigungen ermitteln. Für das Feld der Ausgleichsrechnung bieten das Gradientenverfahren und das Newtonsche Näherungsverfahren übersichtliche Lösungswege (Abschnitt 4.2).

4.1 statistische Kennwerte

Allgemein informiert eine Tabelle oder eine graphische Darstellung über die Verteilung eines Merkmals in einem Kollektiv von Messwerten, statistische Kennwerte haben die Funktion, über spezielle Eigenschaften der Merkmalsverteilung Auskunft zu geben. Von besonderer Bedeutung sind zunächst einmal die Maße, die alle Messwerte zusammenfassend charakterisieren: Die Maße der zentralen Tendenz (Medianwert, arithmetisches Mittel) sowie Kennwerte durch die die Unterschiedlichkeit oder Variabilität des Merkmals innerhalb des Kollektivs repräsentiert wird (Dispersionsmaße).

Für die vorliegende Untersuchung werden verschiedene Kennwerte verwendet. Das arithmetische Mittel ist das gebräuchlichste Maß zur Kennzeichnung der zentralen Tendenz innerhalb einer Verteilung.

Ein Nachteil des arithmetischen Mittelwertes ist jedoch, dass er stark durch Extremwerte beeinflusst wird. Dieser Sachverhalt soll anhand eines Beispiels verdeutlicht werden. Der arithmetische Mittelwert (5 m: 1.75 m/s²) im Diagramm 2 (Anfahrbeschleunigungen; Abbieger; außerorts) liegt zunächst deutlich über dem Median (5 m: 1.7 m/s²). Die Betrachtung der Einzelwerte innerhalb der 5-m-Kategorie hilft die Diskrepanz zu erklären: insgesamt liegen drei Anfahrbeschleunigungen vor, die oberhalb von 2.7 m/s² liegen. Diese Ausreißer hebenden den Mittelwert für diese Position nach oben und belegen damit wie empirisch die Mittelwertbildung auf Extremwerte reagiert.

Ein weiterer Nachteil liegt darin, dass sich die Standardabweichung für diese Verteilung nicht als Dispersionsmaß implementieren läßt, da sie nur auf eine Normalverteilung anzuwenden ist. Daher betrachtet man häufig nur einen eingeschränkten Streubreich wie z.B. nur 80 % aller Werte (Interdezilabschnitt). Dieser Bereich ist durch die Werte begrenzt, die die unteren 10 % (das 10. Perzentil) bzw. die oberen 10 % (das 90. Perzentil) der Verteilung abschneiden. Um eine größere Bandbreite zu präsentieren, wurden die nachfolgenden Perzentile in die Grafiken eingebunden: 10., 20., 50., 80. und 90..

Der Median entspricht einem Wert, der die Anzahl der Messwerte
Bei der numerischen Bearbeitung der Daten wird die Nähergungslösung für die Funktionsparameter $s(t)$ und $v(t)$ nach einer linearen Regression berechnet. Die erhaltenen Werte werden in einem Diagramm dargestellt, um die Abhängigkeit der Parameter $s(t)$ und $v(t)$ von der Zeit t zu visualisieren.

Tabelle 1: Bewertung der gemessenen und berechneten $s(t)$-Werte

<table>
<thead>
<tr>
<th>Zeit (s)</th>
<th>Weg (m)</th>
<th>Weg (m)</th>
<th>v (m/s)</th>
<th>v (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,32</td>
<td>5</td>
<td>4,85</td>
<td>3,52</td>
<td>3,50</td>
</tr>
<tr>
<td>4,56</td>
<td>15</td>
<td>15,23</td>
<td>5,75</td>
<td>5,67</td>
</tr>
<tr>
<td>6,08</td>
<td>25</td>
<td>24,67</td>
<td>6,75</td>
<td>6,72</td>
</tr>
</tbody>
</table>

* berechnet(e) Weg / Geschwindigkeit

Für die korrespondierenden Parameter Weg ($s(t)$) und Zeit (t) mussten nun Funktionsarten $s(t)$ gesucht werden, bei denen das Eingehen in die zugehörige Ableitung $s'(t) = v(t)$ eine möglichst konforme Lösung zur gemessenen Geschwindigkeit erbrachte. Dazu wurde eine Anzahl von $s(t)$-Funktionen getestet, von denen diejenige als die beste befunden wurde, die die Erforderen Annäherungen der gemessenen Geschwindigkeit erbrachte. Die bestehenden Probleme bestanden darin, dass die berechneten Parameter $s(t)$ und $v(t)$ nicht exakt den tatsächlichen Werten entsprechen. Anhand der gemessenen und berechneten $s(t)$-Werte wurden Schätzungen für die Kontinuität der Geschwindigkeit getroffen, wobei die errechneten Werte mit den gemessenen Werten verglichen wurden.

Literaturverzeichnis