Klaus Schmedding Michael Weber**

Verzögerungswerte von Zweirädern

Zusammenfassung

1 Vorwort

2 Versuchsauflauf

3 Versuchsdurchführung

Beider Versuchsdurchführung wurden alle Zweiradfahrer ange- wiesen, aus einem Geschwindigkeitsbereich von ca. 50 bis 70 km/h max. Verzögerungen mit ihrem Zweirad zu erreichen. Pro Fahrzeugtyp wurden im Mittel zwei bis drei Versuche durchgeführt, wobei die Fahrzeugführer die Zweiräder gelegentlich auch wech- selten.

* Dipl.-Phys. Klaus Schmedding;
** Dipl.-Ing. Michael Weber, Sachverständige im Ing.-Büro Schimpelfennig und Becke, Münsterstraße 101, 4400 Münster-Wolbeck

3.6.1 Krad, Moped

* Bild 1: gemessene Bremsverzögerung von schweren Motorrädern (42 Messungen)

* Bild 2: Bremsversuche mit Fahrerfahrer (4 Wochen Führerschein)

* Bild 3: Bremsversuche mit Integralbremsanlagen

4 Versuchsauflauf

Es wurden insgesamt 50 Einzelbremsversuche ausgewertet, bei denen noch zusätzlich je nach Fahrzeugklasse und Erfahrung des Aufsassen unterschieden wurde.

Das Bild 1 zeigt das gemessene Verzögerungsband schwerer Motorräder (> 500 ccm), wobei die Fahrerfahrt des Fahrzeugs- lenkers als durchschnittlich bis hoch zu bezeichnen ist. Man liest ab, daß die aufgenommene Kurve in einen Verzögerungsbereich von 6,5 bis knapp 10 m/s² ansteigt. Durchgeführte Versuche mit Fahrerfahrern (4 Wochen Führerschein) zeigten im Mittel deutlich geringere Verzögerungswerte. Diese lagen gegen Ende der Bremsphase zwischen 4,5 und 6 m/s² (Bild 2).
Ausgeklammert aus der Masse der gemessenen Verzögerungskurven wurden noch die Versuche für Zweiräder, die mit einem Integralbremssystem der Fa. Moto Guzzi ausgerüstet waren. Bei ihnen zeichnet sich eine recht einheitliche Verzögerungskarakteristik ab, da bei diesen Bremsanlagen die linke vordere Scheibenbremse mittels Fußbremsschalthebel mitbetätigt wird. Dadurch, daß der Normalfahrer dazu neigt, das Fußbremsschalthebel maximal zu betätigen, wird das Fahrzeug am Vorderrad relativ stark verzögert und läßt damit nicht nur durchschnittlich höhere Werte zu, sondern führt auch zu gut reproduzierbaren Einzelversuchen (Bild 3).

Das gemessene Verzögerungsbild einer völlig anderen Fahrzeugkategorie, dem Motorrad oder Moped, zeigt das Bild 5. Die Seitenwagen dieser Motorradmodelle waren ungebremst, wodurch systembedingt nur recht geringe Verzögerungswerte erreichbar waren. Aus dem Diagramm liest man ab, daß das erreichbare Verzögerungsmoment in einem engen Bereich um 4,5 m/s² liegt.

Wahrscheinlichkeitsdichte:

\[y(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{x - 6.75}{1.37} \right)^2 \right) \]

Bremsausgangsgeschwindigkeit 50 - 70 km/h

50 Versuche

Um die mittlere Bremsverzögerung zu berechnen, wurden bei einem Großteil der Versuche die Bremsausgangsgeschwindigkeiten mittels Lichtschranke gemessen. Über die aus den Diagrammen ablesbaren Bremsdauer konnte das mittlere Bremsverzögerungsniveau gem. Gleichung

\[a = \frac{\Delta v}{\Delta t} \]

berechnet werden.

Insgesamt wurden 50 Einzelbremsversuche ausgewertet. Die in diesem Rahmen entstandene Wahrscheinlichkeitsverteilung zeigt das Bild 7. Interessant ist, daß diese Wahrscheinlichkeitsfunktion bei einer Bremsverzögerung von ca. 6,5 m/s² ihr Maximum besitzt. In höheren bzw. niedrigeren Verzögerungswerten nimmt die Wahrscheinlichkeitskurve relativ gleichmäßig ab. Die Wahrscheinlichkeitsdichte

\[y(x) = 0.29 \cdot \exp \left(-\frac{1}{2} \left(\frac{x - 6.75}{1.37} \right)^2 \right) \]

gibt an, wie hoch die Wahrscheinlichkeit ist, den angegebenen Bremsverzögerungswert innerhalb dieser Meßbreite tatsächlich vorzufinden. Der einmalig gemessene mittlere Verzögerungswert von 3,5 m/s² war auf einen Defekt an der Bremsanlage des be- nutzten Krades zurückzuführen, so daß dieses eigentlich aus der Versuchsserie auszuklammern ist. Man kommt letztlich mit Hilfe dieser Versuchsersatzverwendung zu dem Ergebnis, daß für längere Bremsvorgänge, in denen der Zweiradaufhängung kontrolliert bremsen konnte, eine mittlere Verzögerung im Bereich um 6,5 m/s² angemessen werden kann.